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ABSMAMT

A rrber of problems that arise in radar ard sonar app!Icaticns

can be regarded as parameter estimation problems, in which the desired

signal, f(t,a), is imbedded in non-khte, Gaussian noise. It is de-

sired to estimate the urhmn ,y, nonrandcm parameter vector, a, from ob-

servations (continuous or sampled) of the received noisy sigral over a

firdte time interval [O,T]. Here f(t,a) is a kmwn nonstochastic

function, and w shall consider the case when f(t,R) is linear in a.

In this case, a is referred to as a linear regression vector.

We shal investigate the'variance of the Least-Squares (IS) esti-

mator and of the so-called Generalized-Least-Squares (GLS) estimator

for a. Both are unbiased estimators -for a.

When the noise covariance function is catpletely known one may

construct a minimum variance unbiased estimator (MVUE) for a, and this

estimator is a member of the class of GLS estimators.

Our interest is in the -case when the noise covariance is not can-

pletely knoe.m, but may be regarded as a known function of a finite

number of unknown, nonrandom parameters, 3.

It is shown that when - contains any covariance parameters other

than the noise variance, there exists no MVUE for a.

iv



However, we sha!.1 exhibit a class of Droblems for wfhich the IM-E

for a ns a ariance -Which is orders of map-_itude sma1 er than that of

thbe IS estimator. In such a case it is of interest to find an est'--a-

'tar mihch makes .use of whatever covariance infoniation is available in

an attempt to approach the performance of the MViE.

It is -shown that we can sigificantly improve upon the 1S estima-

tar by eiploying a bootstrapping procedure to estimate a. In sare

cases the bootstrapped, estimate of a can be shw.n, to be unbiased. In

any case, it is demonstrated via computer simulation that the boot-
0

strapped estimate of a is capable of reducing the variance of the IS

estimate by orders of magnitude. In fact, the mean squared estimation

eirror-using the bootstrapped estimator for a may be within a few -per-

cent of the variance of the MVUE, i.e., the Variance the MVUE would I
have if Swere known a-priori.

iThe bootstrapping procedure consists of using the LS estimate of

a to provide an initial estimate of the regression vector from which

an initial estimate of the unknown covariance parameters is con-

structed.

Two, procedures are outlined to accomplish the estimation of 8.

The first approach is based upon an application of the theory of

locally best unbiased estimation. The second approach is herein termed

the "inverse-covariance-function" technique. Because of its simplic-

ity, the latter approach is employed in the simulations.
V



Regax'dless of the marier in utich the coairiamce pa aeters are

estimated, these estimates are used to construct the GLS estimator for

a. oti is the first iteration of the bootstrappirg procedure.

The GIS estimate of a is then used to _re-estxImate the unkow co-

variance parameters, and then to re-estimate the regression parameters.

The process uses only the one available record of data, and may

be repeated ad nauseam. However, drmnatic results were obtained after

only two iterations of the bootstrappirg procedure.
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C~pter 1

]MIRJWUCflO

1.I Problems and Objectives

A number of problems that arise in radar and! sonar applications

can be regarded as parameter estimation problems in viich the data

r(t)-f(t,a) + eCt) (1-1)

ae received (either continuously or sanpled) over a finite time in-

terval [O,T]. Here the desired signal, f(t,a) is a known function of

the unknown n-dimensional parameter vector, a, and e(t) is observation

noise. We shll be interested in the case where a is -a nonrandom

parameter vector and e(t) is a sample function from a continuous-in-

mean, zero mean, Gaussian random process. We shall restrict the dis-

cussion to linear parametric dependence. That is,

n
fM,c ) aigi(t) (1-2)

I=i

where fg(t) :i=l,...,nl are known nonstochastic time functions.

It is well known that with the above assumptions, the mininum

variance unbiased estimator (M4vUE) of the regression parameter vector,

a, is a function of the covariance properties of the noise process.

In this dissertation, we consider the problem of estimating a

when the noise covariance (or equivalently the spectrum in the case of

a stationary random process) is not completely known.

(1



Rhe method of approach is to treat- the noise covariance function

as a knwn function of a finite nurber of unkncwn, nonrandom para-

meters.

he main cbjectives of this work are:

1) to provide sane insight into cases where dramatic

inprovement over the performance of the simple least-

squares (IS) estimate t , which makes use of no knowledge

of the noise covariance, is theoretically possible.

2) to propose a reasonable estimation procedure ihich

is capable of offering significant improvement over

the performance of the IS estimator.

3) to investigate the performance of this procedure

analytically and experimentally via several exanples

which demonstrate its utility.

1.2 Sumiary of Previous Work

The subject of optimum* estimation of f(t,_) when the noise

statistics are comletely known has- been investigated by many authors.

Rao's book [1] is an excellent reference on the subject. Grenander

t See Section 2.2 for the definition of the LS estimate.

In the sequel optimum always refers to minimum mean squared error.



and Rosenblatt [2] present the material more from the point of view

required in the treatnent of randcn processes than does Rao. Parzen

[3, 4] uses the tools of Hilbert space to provide an approach which

is applicable to both the continuous-time and sampled data cases.

Cramer (5] and Wilks [6] are good references for an understanding of

the basic mathematical statistics required in the study of parameter

estimation problems. Swerling [7] derives useful expressions for

evaluating the covariance matrix of vector parameter estimates for a

mide class of problems. In another paper [8] he discusses various

approaches to the parameter estimation problem, including the case in

which the unknown parameters are regarded as having a known a-priori

probability distribution.

On the subject of power spectrum and covariance function estima-

tion the classical references are Blackman and Tukey [9] and Grenander

and Rosenblatt [2]. A recent paper by Parzen [10] sumarizes much of

the present state of knowledge on this subject. All of these works

are concerned with estimation of the entire structure of the spectrum

or covariance function, however, and are not applicable to the case

in which the covariance or spectrum is known but for a finite number

of unknown parameters.

Two papers concerned with the parametric approach to power spec-

trum estimation are those by Levin [11] and Hofstetter [12]. Levin's



results are approximate results which hold under a wide variety of

conditions. Unfortunately, however, the effects of the approximation

have not been quantitatively evaluated. Farthermore, for the examples

presented in this dissertation, where the optimum estimator is signi-

ficantly better than the IS estimator, it can be shown that Levin's

approximations are invalid. And while Hofstetter's approach is exact,

he is unable to obtain any analytic results except for the case of

estimating a spectral amplitude scale factor. The estimation of a

spectral scale factor is not pertinent to the problem of estimating

linear regression parameters, which we are concerned with here.

A recent paper by Rao [131 considers the linear regression

parameter estimation problem when the noise covariance is unknown, and

an estimate of it is incorporated into the regression parameter esti-

mate. Here the noise covariance is regarded as capletely unknown,

and estimates are constructed for each element of the noise covariance

matrix. Rao's assumptions require, however, that a number of in-

dependent realizations of the same random process be simultaneously

obtained (e.g., via multiple sensors). (These separate realizations

could be correlated if their correlation is known completely.) In

fact, the number of realizations obtained must be at least as great as

the number of time samples available in each realization. This

follows fran the conditions for the existence of the Wishart distribu-

tion which is central to his results. In his paper, Rao uses the

T
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available independent realizations in order to construct the covar-

iance estimates.

Up to this point, references have been cited which fall into

one of three categories:

1) Signal parameter estimiticn with known noise covariance

2) Noise spectrum or covariance estimation (parametric ari

nonparametric)

3) Regression parameter estimation using an estimated (non-

parametric) noise covariance matrix.

The parametric covariance approach to be adopted here really

amounts to a particular kind of joint parameter estimation problem.

As such, it is logical to ask if there exists sane general theory

-which is capable of providing optima estimators of the desired para-

meters.

The results of Barankin [14] provide the desired theory when

one is willing to accept what are termed "locally best" unbiased

estimates of the desired parameters. %  In some cases only locally

tWe are not really interested in locally best estimates of a. How-

ever, an application of Barankin's theory will reveal that under

certain conditions (to be stated) no MVUE of a exists. We will then

abandon the requirement of bestness and hope to find an estimate for

a whose performance is close to that of the MVUE when the latter

exists.
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best unbiased estimates will exist. A necessary and sufficient con-

dition for the existence of locally best and for uniformly best

(i.e., MVUE) unbiased estimates was stated by Rao [1]. Barankin gives

a different necessary and sufficient condition for the existence of a

locally best unbiased estimate. Swerling [15] restates Barankin ' s

results in a form more easily applied. Since neither of these papers

has received much attention, and because of the author's own interest

in this important subject, much of the development will be elaborated

upon in this dissertation.

In addition to the above-mentioned references, there are a host of

papers [16-33] in the fields of cybernetics and adaptive control which

the author has found useful and stimulating.

1.3 Outline of Dissertation and Summary of New Results

Chapter II begins with an investigation of the simple LS estima-

tion procedure and proceeds through a development of the generalized-

least-squares (MhS) estimator*. The optimum estimator, when the noise

covariance is known, is a memer of the class of GLS estimators. For-

The GLS estimator is defined in Section 2.3.

t -
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nulas are given for the covariance matrix of the parameter - estimates.,

The results are given for the continuous-time and sanpied data cases.

These 'results are not new, but their development constitutes a con-

venient introduction to the subject and symbology which follow them.

Using these tools, two examples are provided in which dramatic im-

provement over the performance of the IS estimator is theoretically

possible, These exaiples are investigated in greater depth in the

chapters which follow.

In Chapter III the Cramer-Rao bounds for joint unbiased Cstimates

of the regression and covariance parameters are derived for the first

example mentioned above. In this example the noise process is a

stationary first-order autoregressive scheme. It is shown that the

bound on the regression parameter estimate is not increased by the

,presence of the unknown noise covariance parameters. Since this bound

cannot be achieved except under certain limiting conditions, an ir-

vestigation into the Barankin bound, which is always achievable, is

made. The Barankin bound analysis is quite general and is not re-

stricted to the case of autoregressive noise. (An exposition of

Barankin's theory is given in Appendix II.) It is shown that no uni-

formly best (i.e., MVUE) estimator for the regression parameter exists

when the noise covariance (normalized) has unknown parameters. A

technique employing barankin's theory for the estimation of pertinent

covariance parameters is suggested.
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Chapter Nis -conc'ned with the synthesis , and analysis of the

des! d-est~ation procedure involves nonlinear opera-

tions, on the data,-making analytic results for bias and mean square

error calculations difficult o obtaii.. Sane analytic results regard-

ing the bias, of the-oestimator -are presented. A detailed investigation

into the perfomarre. of the procedure- is made via 'a digital cacputer

simulation of the twoexanmples mentioned earlier. in the course of

defelooing the proposed procedure, a c&0parison is made to the joint

maximum likelihood' estiiator.

The main result is the demonstration,(via simulation) that sign-

ficant improvement over the LS estimator performance .can be obtained

in s-ne cases,:by the use of the proposed procedurie.. Tne 'procedure

actually amonts to an un upervised learning or "bo6tstrapping" tech-

nique in which the LS estimate of the ,'gression parameter is used to

estimate the noise covariance ,prameters. The estimated covariance

param ters, are then used to revise the regression estimate making use

of the GLS estimator. The process can be continued ad-nauseanm.

However, the exanples studied indicate that after only .two revisions

of the LS regression estimate, the mean squared error may be nearly

equal to the variance of the MVUE.

This result runs counter to a remark made by Eicker [34] that a

useful estimate of the covariance matrix, or of the functions of it

which are pertinent to estimating the regression parameters, cannot be

constructed frn a single-'finite sequence of observations.

t=

I- " ' .



Chapter 2.
FIIOI LINEAR EUTMMTON

2.1 Introduction

By a linear estimator -_, is meant a measurable function of the
observables, R which is linear in the observables. The interest in

linear estimators is due largely to the ease with which they can be

synthesized and also to the availability of analytic tools to investi-

gate their performance. 5irthermore, for the linear regression model

of interest here, the MVUE of a is a linea. estimator.

In this chapter the LS and GLS estimators of a, which are linear,

unbiased estimators of _, will be investigated. The data will be as-

sumed to consist of time samples, and vector-matrix notation will be

employed' for convenience. The generalizations required for treatment

of the continubus-time problem will also be given.*

K *

In general the results for time sampled probl~ms will depend upon
how the time samples are distributed on the observation interval.
This dependence will n6t be explicitly denoted in the sequel,
however.

It is well to observe that if the time samples are constrained to
be equispaced on an obserVation interval of fixed length, the
estimation accuracy is not necessarily monotonically improved as
the number of samples, is increased. It Can be shown, however,
[351 that, the optimum linear estimate is obtained for dense saimpling
in the interval. (Also, of course, a set of samples which con-
tains an6ther set will not lead to a worse estimat.)'

9

4
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j2.2 Least-Squares Estimation

The problem of interest may nov! be stated as the estimation of a

when the data is of the form

R = Ga + e (2-1)

Here R is an Nxl column vector consisting of the N time samples of

data on the interval [O,T]I. G is a known-Nxn matrix whose elements

arez given by

G=[gp]' (2-2)

pi = gi(t,) U =I,2,...,N ; i=l,2,...,n (2-3)

a is an nxl column Vector consisting of the unknown regression para-

- meters, arnd- is an Nxl column vector of zero mean Gaussian noise

samples.

The LS estimator, 2LS, is that function of the observables which

minimizes the sum of the squares of the residuals. That i LS

minimizes the quadratic form

Q(a) , I r- aigi

Hence,

3(90 N r n ,,ad(-) 0 a r sigiIj u, J121.,

a =a,K (2-5)



Me system of equations above is summarized by the equation

GR = GTG Ls(2-6)

which yields the familiar result*

= IGTGIl-GTR (2-7)

It is easy to see that - is an unbiased estimate of a. That

is, let a belong to the parameter set A. Then**

E[aS] = a Y a e A (2-8)

The covariance matrix of any unbiased estimate of a, say a_,

(also termed the estimator dispersion matrix) is an nxn matrix of

elements,|dij; i,J = i, ... , which we will denote by

D(.) = [dijI] = E (.- a) ( - a)T] (2-9)

For the IS-estimate we have

T -1 TD(Cs) = [G G] GT4 G[GTG] - l (2-10)

where 4) is the noise covariance matrix,

ST -1

The existence of [G G]I is assumed. This requires, of course,

that N > n.

The notation E[... ] denotes ensemble expectation and will be used

interchangeably with the symbol [...].
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T.# -E ~Z (2-fl)

Observe that is linear in the data, and that it in no way

involves kn*Iedge ot the noise covariance matrix for its construc-

tiorn.

To derive the corespordig frnwUlas for the continuous-time

case e may pve by -maki" .ng use of the rm-rbunen-Loeve expansicn of

the racm process et). -Ihen for a positive defLfnite covariance

(t;s) c.[e(t )e(s)] (2-12)

(t)= t dt (2-3)

0

T
-- 0-

ik f(t)1 k(t) dt (2-15)

0

T

k = f r(t)&k(pt) dt (2-17)

0
_T

T
Sek = fe'(t)lp(t) dt /(2-17)

0

- --
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j

where the above equations hold for k = 1,2,....

Hence, we have

nrk gk +e k ;k =1, 2,... (2-18)

i-l

or in vector-matrix form

R = G a + e (2-19)

Equation (2-19) is exactly the same as Equation (2-1), except

that in (2-19) the dimensions of the vectors and matrices are infinite

with respect to the k index. The solution for LS obtained in Equa-

tion (2-7), therefore, still holds with the following modifications.
The_'nxn matrix GTG has elements given by

TT

(GTG) 1 =- I~k =-I~ i
E= k m=1

-j g( i kIt) (f gik j4~(t)) (t

T
f f gi(t) gj(t) dt ; ij = 1,2,...in (2-20)

0

Similarly, the nxl vector GTR has elements given by
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T

(GTRf =X jrIfgj(tY r(t) dt;j 12...,n (2-21),...ii "g . 'rz
-k- 0

For the estimator-dispersion matrix, Equation (2-10) still holds,

here .(2-20) is used to obtain the matrix GTG,, and where the elements

-of the matrix GTO G are found froim

(G, G),J = g1k , ; i,J = 1,2,...,n (2-22)
: ,k,m~l

with -

T

0,=-ff (t,s)k(t)-y(s) dt ds = XK 6k (2-23)

0

Substituting (2-23) into ,(2-22)- we obtain -the desired expression.

T

(GT$ G) j = ff g 1 (t)' $ (t,s) gj(s) dt ds ; i,J=l,2,...,n (2-24)
O

2.3 Generalized Least Squares Estimation

In the preceding section, the fS estimator for a was found 'by

minimizing the sum of the squares, of the residuals. The GL estimator

is ,obtained by minimizing the more general quadratic form

N n

-- L Ir - cir9- (2-25)

1z I
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where n are the elements of an arbitrary (real) positive-definite

matrix, 1. Usually, 11 is taken to be symetric. It is apparent that

when in is chosen to be the identity, matrix, the IS estimator will

result. It will be seen shortly that 2LS is an unblased estimator of

a and is linear in the data.

For Gaussian noise with covariance matrix 4, if Tj is taken to be

0-i, then-LS is the MVUE of a. This can be shown in a variety of

ways [1, ?1.

For the present we shall regard n as any real, symmetric, pos-

itive-definite matrix and give the form of

Proceeding formally with differentiation as in Equation (2-5) the

following matrix equation results.

[G nG] GrR (2-26)

Hence,

(-S-- [GTrG]-GTR (2-27).

Observe that a is linear in R and is an unbiased estimate of a, no

matter what matrix, n,, is used. The dispersion matrix of - is2GLS

easily calculated.

D(GLS) = [GTnGI- GTrI G[GTnG]- (2-28)

In the case where n = - this reduces to the well-1moWn result

_________" m - -

_ _ _ _ _ _ _ __.... ..... _ _ _ _ . . . ..x



D(_1) = (GTO-1G1-1 (2-29)

where the subscript on & denotes the fact that this is the MVUE of

a. Note frcm (2-27), with rn = 0-! , the- explicit dependence of a on

the (normalized)- noise covariance matrix.

The formulas for the continugus time case, corresponding to

Equations (2-20), (2-2i) and (224), for arbitrary n require special

treatm.hti When the sanpled-data form of rn is the inverse of a

covariance matrix resulting fran the sampled form of a covariance

I"iction, O(t,t!'), the results of Swerling [7] may be used to find

the. fornulas in the limit as the st:ples became dense-in the observa-

tion interval. We will be interested in the dispersion matrix of

a when the sampling is dense. In this case

T

(GTD-IG)i = fgi(t) h (t) dt ; i,j = 1,2,.... ,n '(2-30)

where h '(t) is the solution to the integral equation

T

fhj(t) O(t,s) dt.= gj(s) ; s c [O,T] ; j = 1,2,...,n (2-31)
0

This result is valid whenever I h (t) ; j = l,2,...,nl exist as a

solution to the above integral equation and whenever certain other

conditions outlined in Swerling [7] and [151 are satisfied.

The estimator dispersicn matrix for a is then found using

¢,_
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Equation (2-29).

With the preceding results at our disposal, we are prepared to

compare the performance of the LS estimator with that of the MVTE.

2.4 Performance Comparison

The °purpose of this section is to disclose a class of problems

in which "dramatic improvement" over the performance of the LS esti-

mator would be possible if the noise covariance were known. By

dramatic here, we mean at least an order of magnitude reduction in

the mean square estimation error.

This investigation is motivated in two ways. Firstly, the cc-

parison provides a measure of the sensitivity of the optimum estimator

to imprecise knowledge of the noise covariance. Highly sensitive

cases will exhibit dramatic performance differences. Secondly, since

a simulation is enployed to investigate the performance of the esti-

mation procedure suggested in Chapter" IV, it is desirable to simulate

examples where the improvement, if any, is not likely to be obscured

by simulation innaccuracies. The results of this section provide such

examples.
I

The following treatment will be concerned with the case when a

consists of only a single parameter, a. The formulas presented in the

previous sections can be used for the more general vector parameter

case in an obvious manner. Also, the continuous-time formulas will
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be emphasized since their use avoids, the need for matrix inversiais

and facilitates hand calculations.

Therefore, for the variance of the IS estimator we have fron

-(2-10), (220") aid(2,224)

-T'

ffg(t) *(t,s) g(s) dt ds

Vl -,(2-32)

Ffg2 (t)12",

and the minimn , variance possible is

T T
Vh(t) (t,s) h(s) dt ds = h(t) g(t) (2-33)

-0 .0

where h(t-) is the solution to

T

f 'h(t) , (t,s) dt = g(s) ; se[o,T] (2-34)

0
0

We seek exanples for which V is much less than VLS. One such

exanple is the folloing:

Exarrple 1.

g(t) {cos wot 4 oe[O'T] (2-35)

0 otherwise

0 (t-s) a 2' exp[-O It-sI]* (2-36)

Note that the noise process is stationary in this example. This will
also be the case for Example 2, which follows.,
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where the parameters w and 8 are chosen in accdance-with the con-
0

dition that for same non-negative integer, k-,

(2k,+ 1)w0<0 T<<l<w T F - (2-37)

where T is the length of the observation interval. If this is done,

then for dense sampling we obtain

. (wT)2

VLS ( 0T) 2 +28T BT (2-38)

To derive the above results we apply Equations (2-32) through (2-34).

T

a2 ff (coswt) (cosws) exp(-S It-sl)dt ds

T i cos 26t dt]

0

The calculation of the integrals above results in

VLS = 8a2$(w T)2[l + (8 T/wT) 2][! + (sin 2w0T)/2woT]21 I

1(8 T/2) [1-+ (sin 2woT)/2w0T] + (sin2 w T)/2

+[exp(-8 T)'][(8 T/wT) coSo0T - (8 T/woT)si. T]"

[1 + (O T/woT) 2]- - (8 T/woT)2 [I + (8 T/woT)2]-I1 (2-40)

To calculate V we require the solution for h(t) in Equation (2-34

ii i C
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ThiVs soluticn is given in Swerling [15] when O (t,s) is of the form

,expressed in, -(2-36) and g(t) is twice differentiable with respect to

t for t within. the observation interval.- When g(t) is given by (2-35)

the result 'is

1 f 2
h(t)" , (csw t)[l + (w T/O T) + 6(t) +

[cosoT - (w.T)(sinweT)/O TI 6(t-T)_ (2-41)

whereo6(.) is the Dirac-delta function.

Using (2-41) in,(?-33)-, we obtain for

T] 62i*8 (2-42)

___2 w .T] T2'U . + TI +A l + cos T] T sin20T

It can be Verifid that the quantity /VLS has local minima

9- , 0Ti ~a oa d utpeo r2 ft n aif

relation (2-37), the approximate result in (2-38) follows. Note that

the dramatic Improvement afforded by the optimum estimator, as

measured by V/VLS depends on the ratio of the signal 'bandwidth to the

noisebdndwidth; not on the signal-to-noise power ratio per se.

While the above analysis applies strictly for dense sampling, it

provides a good indication of the behavior of the time-sampled version

of the problem if the sampling rate is sufficiently high. This will

be indicated-by numerical resuits- later.

t,-
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Considerable insight can be gained, by looking at the above ex-

ample fromn the frequency dcviain point of' vie-w. Tob this end we shall

def'ine the signal power spectrum, S (w), as
g

!2

S (w) =I*fg(-t)l 12 I 5 g(t)exp(-jwt) dtI12  (2-413),

=s

where $$.4denotes the Fourier transf'on operation. mhe noise

power spectrun will be defined'in t1be usual fashion by

FPran this it 'follows that for Ex anpie 1

/2 sin x, cosw T[cosw T - costaD]

S~w) 0 ) ('xo2-45)

S'M 20 a (2-146)e .) 2 +(2

I-I

where,

|T

(w 1 W ) T '(2-47)

(w +-w )'T

I0

2 (2-48)

2 21

Now it can be observed that when w -T is fixed at an odd multiple

of' no2 the cross-product term (_J.e the last-term) in S W vanishes.
g

whierse .its sden-separation between the main regions of concentration

of' signal and noise power.
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Figure (2-1) depicts the distribution of signal and noise power

-in t4 frequency- dcmain when the parameters are chosen so that dra-.

matic iiyioirvnt is possible. In this illustration w T-equals 5w12.

'(7he spectra are symmetric about -zero frequency and w0 .)

/OW

IS* S),

.0 w r- 3v 2v 5v
2T -T 2T T 2T

Figure 2-1. Power Spectra for Example 1.

Figure, (2-1) suggests that the dual problem, whidhobtains when

the center'-frequency locations of the two spectra in Example 1 are

interchanged, might also afford an example where dramatic :improvement

over the performance of the LS estimator is possible. This, in fact,
is true.

I -'

A' _________________ _________________________________________________--"-
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7he specific example is

Exaile 2.

g(t) ;~ t €o,)(2-49)g:)2-1 otherse

S(t-s) = 2exp(4  it-sl)cos,[L(tas)] (2-50)

Wihen the paramters are chosen-so that for sane noni-rgatiVe

integer, k,.

0<0 T<<l<61 T = (2k- + 1)7r (2-51)

then corresponding to Equation (2-38) we have

wJ[exp(-weT) + 1]VL S LwTexpCT + 1] + 2[exp(CT)-i T

where the last approximation holds v.hen wCT is >> 1 (i.e., k>!'.
The derivation of this result follows.

For VLS we have

T T

'V = 0 (t-s) dt a = ff exp(-8it-sl)c~s[w(t-s)]dt ds I
0 2 

2 (w T) -(OT) 2
2G )2  2 4OT)] + ) ()2 I - exp(-sT) .cosweT[( CT) + );T I (wCT) +OT)

2exp(-OT) , (w T) (T)sinw T (2-53)

( C T) 2 +(T) C °"

C_ i ' , . . llili



I TO calculate it is recessaz7 t solve tie intega equaticn

19 P(t)exp(-B it-sI)cos[tsc(ts)J ft 1 ;sc[OTJ (2-54)
'0

I WV) KJexp(-t),+ exp4k(t-T)I]j+ IK1+K2 t + 6(t 1,] (-J

2 + 2 2 (2-6

-kw2
KC (2:7

(k- 0) (kc -)exp(W
- K 1 k 2 /2a2  

-(2-59)

~~2 1 k t + i-'tk O)expi-iTf (2594 plying Equaticn (2-33) wec-ti

k0t-x(kPl+ KT + 2k2,(2--60)

In this ex-iiple, local mdirm of 0/ ocr X seult

an add integral idtiple, of wi. The Do-r suectr-.a are displayed in

Figu;V, (2-2) with-w T' eaual to 3;r. 'Iheffoirm a ftcr the spectra are:
C

Sg(CO) =()( 3)2-)
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I-

x3 = -Tr (2-63)

IFiue 2-2. PokerU Spectra for Exwple 2.

Me above examples suggest that a class of problem in which /Vs is

very smll (i.e., <<!) is characterized by tie property that the noise

baflwdth is very small relative to the signl badwdth, and that the

location of the noise "spike" is such that a-linear weighting filter

cperatig on the gle2. data can de lze the noise enery
'I



without unduly corruting the useful signal. It would also, appear

that this concept could be extended to noise spectra which contain

several spikes.

In fact, these statennts can be rigorously established whenever

the optinm linear iased estirator for a can be represented by

T

a = f 4(t) r(t) t (2-64)

0

ihere.l(t) denotes the cp"imzn weight function.

By applying the variational calculus to miniuize the variance of

T

a =f w(t) r(t) dt (2-65)

-0.

subject to the unbiasedness constraint that

T

f w(t) g(t) dt = 1 (2-66)

0

it is frud ]361 , that 9(t) must satisfy the integral equation

T
- ,j.t) * (t,s) dt = g(s) ; s s[O,T] (2-67)
0-"

I where is the minimu variance 6btained, and is given by



27• I
V & i(t)-0 (tjs) (S) dt ds (2-68)

(Multiply both sides of (2-67) by 4(t) and apply (2-66).)

But is also given by Equations (2-33) and (2-34), since the 1

cptimun estimator is unique with probability one [1,. 6]. We then have

the association between (t) and h(t) given by

O(t) = h(t). (2-69)

Hence, except for a constant, the optimum weight function is equal to

the solution, h(t), of Equation (2-34).
I

Now for any w(t) in (2-65) and for stationary noise, the variance

of the corresponding estimate, a, is

T

V(a) = ff w(t) 0 (t-s) w(s) dt ds (2-70)
0:

And if we define k(t) by

k(t) = fw(t) t e [O,T] (2.-71)

l0 otherwise

then making use of the convolution theorem [371 and Parseval's formula

we have

V(a) = J J IK(w)I Se(W) d (2-72)

2 , e.. . ... .
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where K(M) is the Fourier transform of k(t). Furthermore, the con-

straint equation imy be -rewritten as

f K(w) G*(w) dw 1 (2-73)

where G(M) is the Fburier transform of g(t).

We now See that 4(t) is such 'that the integral in (2-72) is

niinimizdd subject to the constraint in (2-73). It is in this fashion

that w(t) de-enphasizes the noise energy while attempting to preserve

'the informtion in the desired signal.

Another point of view which is useful for investigating condi-

tions for dramatic inroveoent is obtained by employing the Karhunen-

Loeve expansion of the noise process. This point of view does not

require that the noise process be stationary.

Suppose, in accordance with Equations (2-12) through (Q-17), we

find the eigenfunctions *Ik(t)- and corresponding eigenvalues

I L -iassociated with the covariance function, *(t,s). Then the

power in the kt h noise expansion coefficient, ek' is Xk, and the
2

pcwer in the kt h signal expansion coefficient, gk, is 9k. Separation
T

of the signal and noise energy distribution occurs if, for every k,

•A k
-the product T is equal to zero. While total separation cannot

I. T
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rrmally be expected, it may be sufficient, in order to obtain
2/L<I ohv k i(g)2 1  (£2 V

-T <<max -- hv-, Ak  whenever either T or

Xk is lge. hJ

For instance, Van Trees [531 gives the eigenfunctions and

eigenvalues for Example 1 (except that the observation interval is

taken synmietric about zero for convenience). Hence, for Example)1

with t E [-T/2, T/2] we have

21
ak - 82+2 , k ,2,... (2-74)

b kT

i~~~i~~~ir •I()= Tz k ] i j "1  cos; bkt k odd (2-75),

0k(t) - -"sin bkt k even (2-76)
*sinb 1/

$T 1 - bkT I
when the bk are the solutions to the transcendental equation

kn~ += tn b 0 (2-T7)

If the values of bk are arranged in increasing order and- w T and

aT are chosen in accordance with (2-37) it is found that

bkT (k k 4 (2-78)

- 7 7... . .. . .. . .. . . .. . . .. ... .. . . ... .. . .. .. . .. . .... .. . ...
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Mea w.hile we have

T/2

gk Ak  ] cosw t cos btdtJ 0 k
%-T/2

(A -.s n[(m - bk)T/2]+ sln[(w0 + bk )T/2]1=Aki) . (.) 0_ b)V!2 + W (o+ bk)TV2 .k odd, (2-79)

T/2)T/

gk A T/ oosw t sin bkt tk kr,

-T/2

= T/2) co.((k - wo)T/2] + cos(bk + wo)T/2] ,k-even (2-80)
(rb, - w)T/2 (bc + w)T/'2

:where _ _.

; kodd

; k even

* L- c°SbkT]2 .

Using the above results, it is easily verified that, indeed,

T << max T A k  for all k.

The above remarks are intended to serve as an intuitive guide to

a class of problems where one might expect to be able to construct an



estimator which is significantly better than the IS estimator. There

is, in fact, a close analogy between the class of problems mentioned

above and problems related to spatial filtering of directional noise

sources in radar and sonar applications [21]. In any case, Equations

(2-10) and (2-29) may be used to investigate other specific examples.

It is well to point out that for large observaticn intervals,

the class of problems in which the IS estimator can be significantly

improed-upon is quite small [2, 38]. Even Examples 1 and 2 above are
0

such. that VVLS approaches unity as T-)-. On the other hand, this in-

dicates that many problems in which D(&)-D( $) for large T, might

be more interesting, with regard to sensitivity, when' T is small.
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,Chapter 3

BOUNDS FOR SE JOL4T PARA R ESTIMATION PROB

3.1 Introduction

Up until now we have been ccricered with the perfornince of the

IS estimator for a as cappared with that of the MVUE, which requires

complete knowledge of the normalized covariance function of the noise

for its construction. We would like to know the answer to the

-following question: What is the limit on the accuracy -of unbiased es-

7 timates of a when the normalized covariance function, itself, has u.-

known parameters? More .precisely, what is the greatest lower bound
on the variance of unbiased estimates of a in the preence- f-' unknow

covariance paramneters? We are also interested in the form of the es-

timator which achieves this bound. This, then, is what we--wi!l refer

to as the Joint parameter estimation problem.

Hence, consider the family of Gaussian probability density func-

tions Ip(R;y) :rJ defined with respect to Lebesgue measure over

Euclidean N-space, EN, where
T [ T (31!)

denotes the (m+n)-dimensional parameter vector composed of the m-dimen-

sional covariance parameter vector, i, and the n-dimensional regres-

sion parameter vector, a, which belong to same parallelopiped, F, in

Er.

32
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The CrnrerRa6 (C-R) bound for the Joint paraneter estimation

problem furnishes a lower bound, not only for the variance of utnbiase

e stimates of a but also, for the mean squared error of estimates for

the covariance parameters. These bounds, however, are in general not

the greatest lower bounds, and unless they are, they are not attain-

able by any estimator. Nonetheless, the ease with which the C-R

bound can be calculated in many dases, renders it an important bound.

We will calculate the C-R bound for the Joint parameter estima-

tion problem in Example 1, assuming that unbiased estimates for all

the paraieters exist. (An unbiased- estimate Of the regression param-

eter always exists;. namely the )LS estimator. It can also be shoin

that. an unbiased estimate of a 2 exists. The investigation -of whether

or not unbiased estimates of the parameters in the normalized covar- j
iance function exist when the regression paraieter is unknown, is

beyond the scope of this work. It is noted, however, that the cal-

Culations for the C-R bound which follow can be easily modified to

include the effect of a known bias in estimating these paramters.)

The calculation -of the C-R bound for Exanple 1 will reveal that

the C--fficient estimates of the regression parameters are uncor-

This terminology refers to those estimates, if they exist, which
have the dispersion matrix given by 'the C-R bound.

'I,



-I

34

related with those of the covariance parameters. Hence, the C-R-

efficient regression parameter estimate is unaffected by the lack of

knowledge of the covariance parameters. (This ccnclusion remains

valid even when the covariance parameters possess no unbiased esti-

mates.) This is certaindy an unsatisfactory bound in view of the fact

that the optinum estimator of a was found-earlier to depend explicitly

upon the normalized covariance function, and therefore on 0 for this

example. This. motivates an application of Barankin's theory.

The Barankin bound for unbiased estimates. of a is the greatest

lower bound on themean squared error of such estimates about sae

pre-chosen parameter point, 1 cr. The choice of y is carpletely,

arbitrary as long as it lies within the allowed pazameter space.

Wenever at least one unbiased estimator of a eists, there is an un-

biased estimator of a which achieves the Barankln bound. This esti-

mator is tenmed. "locally best" (for Y = Y).

In general, only locally best unbiased estimators exist. Rao [1]

gives a necessary and sufficient condition for the existence of a

uniformly best unbiased estimator (i.e., an MVUE). The theory of

complete sufficient statistics [39, 40] offers a sufficient condition

for the existence of a MVUE.

The beauty of Barankin's theory lies in the fact that whenever a

uniformly best unbiased estimator exists, the Barankin theory will

provide us with it,. even if no complete. sufficient statistic exists.
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} >In aw appLlcatlon, we wuxld likea to fIMne, U t pasale-. wl

iiestimtc of ai idich has rif: -vallae amn all uiba-e2 esti-

mates of a. We mast thenu regard -y as th-e t vaillm cf the ~~~<I eter y. ir a unifxazy best urblased est!lmatw exists, It ill n=t
depend uo the choice of-Y w11 at the &

I of a.

IActally, we will show b7 direct c? 1_ 1'tcr ef te aaaLf

estimatr -that no P.ME fr a exists i~ t ~l1ie1 D

function1 has unknol parnters. This can be sham exed

by madng use or tbe £t-t that the (lcallly,) best unbased es",mex-

I-- Lwd1!e. hWIPIyii #4S flht 3-th rematz C10 Chat:

shwdthata a .wen1iu= . andte. smmia

estimt- of 4 fbr, aibitrary vj,- see ignt 2 is best far aifa

cxgy if n - 1. Mht isa with v= 47is te Fankin esti-

m aiar uchIs best; for ir =,. But tis iresv the tfd== esti-

mairto depend upxn 0 ; so the Barark-fr eslt fer a is cn'-y

16ca23j best..

espite the availability of tire skp7e ariarent aove, it is

SInstruictive to apply Baardn's theory in detail11 to the joint estira-

tion prclem. In.s doingwe will devwlcp some of the hindery

4 *dich Is useful in. aplying Ba:rLnicn'S theory to tbe estfr-±icz of

A1
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3.2 Craer-& Ba!Z3ft fix rsdr Gausssysian !ia!se

'Th probem intrad~ed as Example 1 ew1tr Is atua1y a frt

crie azcK~siwscbene . Mis pemdts ws to %wrIte a s le

anab""ic fbe far the ime~w of t Ise cavarlaice mitrix I,- te

N data sampes are ur±]my sace en the imterm 1 [OT~t. ib sha11

W tb&t ths -is ttbe e.

(3-3)

I -

See Section 4.3

!Brennan and Reed [551 shown that this noise covarlance natrix has
a simple inverse even for unequafly spaced tine s=pes.

ma



Mat is, ii bas cnily one mixomro off-diap ca eaeii sice of. tae 31r
d~Isxai and the indn dL-4mm eutrI-es mre I + 2 e~ p- c h w

cim e1an&ts, *Aih are =Yiity-

7he* JcdntF .*it densitY fzxtic3 of the cbsei-~abIes is

P~l)-(detn) 1  e~pl) I -qjTq I 4~ (34)

(The depelme- of Ya -a m ma b ei explicitly demed.)

-wna the fol~amix associaticm beboeen the- orzxzEts of y

and the uaxmca p ar ame.:is 0 ad a.

11 I 7[r~2 3 ] Boa] (3-7)

I -E1-2 -in -iin-- 1,2,3-.38

Asmmdrig that all the ccaponets of -t have uztiased estirates,

the ntrix ccuiprlses tle desired C-H bmid~. We slell denote the

elments of c by 2m. Simn, for exaple, i 1 is the C-H bmid a n

the variance of uibiased estimates of a. Mie C-H boinmi for unbiased

-estimtes of a is given b~y 13j. Me covmriace of C--efficient esti.-

mates of a and 83 is given by 1-3. Similar rerarks hold for the othear
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ewrts or L 1

ife now rveed to caluate the e]mejts of L and L

£ettLng

A(R 1,) -In p(R1 ) (-10)

w- 10wo

1= i(2wrJI21: +1 ndtq

~ nn (r - a)(r -og,) (-

Wie ma a=iAv pta s~rp-n egwessicri fr the devte-Ina&iw it inj

this example:

Alw~, it is cm-mmdmt to define fme opmties

= ~2 ~ [r, -YAgJ ri Y39J(313

A(y3 ) = r-y 3g,,J (3-14~)

U-
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-n 2L

4, ~1-H~a2 0 46;0(1+9?) rrL+(-r
22 UP G2 2IP 3 + a

A~a =(N-) G1(3-p7

BUT - 260-I 2 (3-16)

S202 = (1_) (3p) 222at 2?(;I(Lp2 (3-W7)

B-z)(n 1 o~ 2p (3212

Tie somlaio 0-1.2atftt

(12 -2 1 )( l 33 ((y 220 ~132) ______ (3-21)

Ii dIe caLcultio of 1th12ec leads to -afmtm i

independent; of a. ribe secacm term is



_____ a -26 rr.a,2 2 r_

a a(02) a~;2 c,2 --( -P2 r1-21  V

26p ~lp + 2pA(a) - (1+p;)t(a)4

S(1-L .)21r:-g 2 (. % + 2pA(cx)

--(14p2 )B(cg)J (3-22)

Finally., using (3-17) tlrouxj1 (3-19) wectaL-.

6 (N-1)(3-23)

13i 1 (3;24) I
'px 2 2 (a)-pA(ce)]

2 [ (r 1-c; 1) 2  + (rff-ag,) 2  + (1P 2 )A(cx)

-2pB(ux)J



11N-

[eg-+ IIw

- - (e gg + e g 1 ,] (3-25)

An sncfl~ e nol-s is zero mean

1.13 131 0

(0-26)

1 7 3 2 l n d ( ) a I Q 1 2 ( - 7

3 Jnfdet(n)J I a ___ [41 In1ca ) + (1

3( 02 3(0 2) 13(d2 ) 
P22

2 . [- N/a 0 J - 1-
2(o 4 

(3-28)

222

+ I P)A~c) -2pB(a)] 

(3-29)
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Hence.

-N + N N (3-30)
2c a 2u

Se firI f!rom

23

32 A(a 2Q(Rf123 1 (3-31)

a -1 Oj2 2 r 0)

____ Ti ____ 222

+ (1+p2)A(C) - 21pB(dz)]

[ei.i +  +(1+ g 2) +ge4 2 1+g 2(-p ) L2

-+- (e, e,+ig +l (3-32)

That is,

123 -132 -0 (333)

The remning element of L is 133.

2a2

1R (33-34
33ac 2 a2

a- 3"a



4-3

a 2 a - i 2 j(I-) (r, - ogl)gl + (r,, - og )-

2 N-1 -

uz!2 9P1=

N-I

2(l-): [2 + 4 + Ulp + P 3-5

'I

(I.I2 N- N-1
2 P 2 ag2-

-2(1-p) 2 2 -

To 2 19 + gi + (1-eP)( -35)-
22r2

NJ-1

133 [g )tg](3-36)a2 i+-P)

To sumnarize the preceding results, -we shall write the canplete

ii L nitrix.
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(N-) (1+p2)622 (N-1)6p2

2 2  2 (1 2 )

L=___N_
L (N-Sp2  0 (3-37)

a 2220 N-i

0 0 2 i-
a g (l-p) g:

L a2(I+P) _j

It is now apparent fron the locations of the zeroes in this

matrix that the C-R bounds on the estimates of the covariance param-

eters are not affected by the presence of the unknown regression

parameter, a. Similarly, the bound on the regression parameter esti-

mate is unaffected by the presence of the unknown covariance param-

eters.

Furthermore, though the above analysis was made assuming a single

unknown linear rejSrmsion parameter, the results pertaining to the

covariance parameters are unchnged for an arbitrary regression

function, f(t,a). This follows from the fact that the bounds perti;;

nent to the covariance parameters are insensitive to the presence of

the regression parameters as long as zeroes ,appear in all the elements f
of the L matrix which involve a mixture of covariance and regression

parameters (for example; 113 and 13 above). An inspection of the

previous calculations for the quantities 113 and 123 reveals that this

will be the case -for arbitrary f(t,a) by virtue of the fact that

ih
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Q(Rjy) is a quadratic form in R.

The actual bunds are found fraL - . If we let 8 and 02

denote unbiased estimates of their respective true" values, 8o and a.

then t C-R bounds for the covariance parameters are

(S,2 _ a2)2 2i~2)

2- N(l-P0 )
o) - 2 2 7 (3-38)

0, (N-l)65 2 [Nl 2

- 0) N(l- 2) + 2 2
0 0

where p0 is ,given by (3-4) with 8= 8 .

the, covariance between -C-R-efficient estimates of 8 and a2 is

given by

~12- o ~~0]ta ngnrai o qa
0(3-40)

0 --
It is interesting to observe that 112, in general, is not equal to

zero. This indicates that the C-R bound for estimating 8 is increased

when th6 noise power, a2, is unknown.

The appropriate results for dense sampling on an interval of

length T may be obtained from the above expressions by taking the

zLni -as N+o and 6 0 in such away that (N-)6 =T. This yields

_j
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_ _ _ _ 2

0
2 2

12= ? 0  (3-43)

0

0 o T + 1

In the case when -f(t,a) involves only a single linear regresqion

parameter, the C-R-bound on unbiased estimates for a- is given by the

reciprocal rf 133. It carn easily be verified that this -agrees with

the result predicted by Equation (2-29),. ius, the C-R bound for the

regressioh- parameter estimate is :achievable, -and is attairid by the

MVUE discussed in Section 2.3. This ccnclusiori also holds :or the

-vector a case.

But sinde the MVUE for a in this example requires knowled& of

(, we cannot expect to achieve the C-R bound for estimates of a when

( is unknown and the observation interval is finite. Indeed, an in--

vestigatioi of the Bdrankin bound, which follows, will reveal that

the C-R bound on unbiased estimates of a can be -attained only if all

the parameters in-the normalized nois&-covariance function are known

precisely.

.q~ v !111 I _ i __L II ll . :_ " "'4
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3.41 inlicatiais of the Fesults (brtaklnd so far

We Iave shmm trat there Is no- MIAE for a, *,-.h the noralizea Id
I-

noise cia.n ftztin 1s aio'j pairatere, . Heve-r, ue

have also seen that in same cases there is a mratI.c differenze

bet-ween the- perioarnantc of the ME of a afd the IS estirate o.fL a. it

is natUral, 'Chen., to ask 1f, in the case of wnzxi~1 o~rinecam

eters, tlre is scoe esUmae of a rhich is sifica-t!y better than

the IS estimate, tbmigi naturam]31, not as good as the KME. - 1.

fbrbzately, it; is d±ifuixl to .i-rd strecture to tie prot&m 0f

searcning for such an estimate.
Ies, ,r, is to canstruc' the Banvin ia est fo r

Oie apaproah arie~

a which is best about an estimate of th tnr value of I. hs real- Iy

amnts to using the CS estitor for a ith an. estirate or 8 used to

ccnstrct the a rate wegt matrix. Mis wfill not r1

lead to an unbiased estimate of a; unless the estiimte of 8 is L-ade

from data which is statistical!y independent frim, the data used for

estimating a. 1neth eless, it is possible that the bias wiln be small

enough to be acceptable; especially if the mean squared error in esti-

-mating a is sgnifcantly reduced. Moeover, im, smie cases this pro-

cedure will provide an unbiased estImate of a, even if the estimate

of 8 is correlated with the estimate of cc. (This will be elaborated

upon in t.e next chapter.)

i.



Miis leaves us with t-he lombe of estiar~ng the parlter 0

IW - couild use the madt--rj DI elio (M) es"Um~te of 0 i17it is coni-:1 vienient to do so. (-Such a prooeue m~ulft actually anmnt to -roint-M

est±maticn of a anr 0 since the naise is Causs-iam.) Or we cculd

eopIcy- Bami!dns theory to estixr~te fl. For exas-pie, %e could per-fon

Ia dissection of the pamamter space for 03 anid apply ted-ecniote in

I ~p~iix11 to obtain an unbiased estinte of each nont in the dis-

seetll-cn. For thids w- need " specify the parametric depeixience of11 ~i - n 0 and use (3-55) f-3- G (I~)L7
in pmrincijie elIher of these techniques, or otters not yet mcm-

tiored, wfld be useda, though mne mithcd w'r be more practical than

the others in a spe-1 Ace case. in the next chapter %e shall consider

an estznte of S (:,diere 8 denote-s the rmcr,.3 paramrmeters in the

I noxnfalized noise covarimnce function) based upon the kncrm functional.

form ofP the noninJlize-d noise covarlance filw.ctton, O('r,0) =-OU A)

*1Thids estimate proves to be remarkably effective for innro'ving the IS

estnAmte of ain &ruples 1and 2.

J
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chapter 4

ME TIERATI ESTIMATION PROCEDURE

4.1 Introduction

In this chapter we will explore a particular method of esti-

mating the pertinent covariance parameters in Examples 1 and 2. We

will then incorporate the covariance parameter estimates into an

estimate of the regression parameter. Thojgh developed thoroughly only

for Exauples 1 and 2, the method is imTediately extendable to other

problems in which the nornalized noise covariance function contains

unkno,m nonrandan parameters.

Our method of estimating the unknown covariance parameters is

based "pon knowing the functional form, e(T,.) = (,)/)(o,6), of

the normalized noise covariance function.

We will use the IS estimate of a to get an initial estimate of

the regression function. After subtracting the estimted regression

function from the data, we have an estimate of the noise process.

This estimate allows us to estimate _ using the function e(-,). We

then generate the estimated nornalized covariance fUnction

=(T,_), and the corresponding matrix §. Finally, we construct

the GLS estimate of a by using n1 - for the weight matrix. At this

point we repeat the process again, this time using the previously con-

55
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Mis *-sta3 of eguaticns is stiff-ml~"ut to solv'e sk-rultan-

eozsly. Hev-, it is i teresting to inspect the stvmttur of -a aM

p in (0-17) a d (4-18).
S IAce th' a i (4.--:8 ) is ,' -j ,siria to the YS estirate of a

in (4I-4), ar if p were I-kxn, then the I estirate of a wvild be tie

Notice also that the estimrate of p in ('4-18) ammzilts to sub-

tracV-ig cut an estimate of th regression fAzction fran the data, and

using the k nom covazdunce function of the noise (see (4-13) and (4-14)

to carstruct the estimate. In this partictiar case, a is to be

cbt'aIned from the simiultaeriews solution of the above equations and

tly.n p can be calculated. However, the form of the estimate in (4-18)

suggests using the IS estimate of a to form P. Mis then, is a way of

motivating the scheme of estimating the covariance parameters by what

vR will term the "inverse-covariance-function" technique.

4.4 The Inverse-Covariance-Function Technique

This method of estimating the covariance parameters, , is a



61

I

ie e enusia a ofs te estrate in Equatm 1l-!8). id ea is to

cbs-in an estmate of tie no-se process by usi-' the IS estimte of

a to stbtract ait an estirate cf the regessic. fuctin. Tien -we

treat the esti.-mted noise process as tkhmi its covmariane flctia

1 .i hIMtiacrmIa fo;z giXven by ¢(T,B). in the sMDled data cas,

for exanie, we can cmtstr'ict estimates

3(6) e e p ,,.. 9

uthere

I, =r P - a&sg11 l=,..I P-20)

(Observe that e is a zero mean Gaussian randan var able )

We then set

and solve for 0 which satisfies (4-21). This requires, of course,

that we have as many estimates, $, as we have unkna,. pa-rameters in S.

Actually, as has been indicated, only parameters in the rormalized

covariance function are pertinent to improving the IS estimate of a.

Therefore, we will consider estimates of the nonnalized covariance

function (,_) = (_) ,_)
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N
11-3

: (r ) =  ~ -;:.p1 = ,...,N -1 i(22)

;i -
Iermaefgzthp 13 wll be rezar-&d En as -P:%raeter vee-tor of the nonilized

We tIen se,

O~p~5 = 8(6,$)(41-23)

and solve -or (,. a s- allas -u to, co-struct an estimte of (,3),

e(T) -Ifor the enre. zneof -C

To illustrate tR procedure we ,ill c-nstrct t.he cova..anee

Paraeter .estinrates for &aipes I ard 2.

I4A.1 s-iatig p in EXa~tle 1

.. i this -exanl we observe that

8(6-,8). -  = p (14-24)

and an estimate of p will suffice for the purpose of constructing the

desred GM estimnor weight matrix. There is only one unknown param-

eter here, so our estimate is

N

) N (4-25)

p=2 U-1

Tis is identical in form to the estimate in (4-18).

,I
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4--.4.2 Estiratirg w, in txaz]m 2

Supome in Exazpl±- 2 we x~gard t kanC~idth parameter,., as 1
knim, 9rd te cente rzquen-iey param-eter., ca, asthe only ienoii A

pis, 2 =e~ -ca w6 (4-26) I
C-

Again ue have oniiy one iwnkr n paramater, and the- estimate is

whre6()is -glvenby (-2" Ppuly it is sufiacient toestimate

th&k quant+Ityv- -_6, since thi-s enables us -to construct the desired

Wei14jt nRstrix, 1h" i the6 fjS estiifntor.)

4.4.3 Est :Ltng BandWldt_ anid denter-Frequency in Exaxrple 2

if we trea1t t, and $ as umnnw.n paramrter's, we need two

-]equat ors, to -obtain etimates of these paranmters. We observe thatI (5 e: cos -w6 (14-28)

e2,)e C os 2w6 (14-29)

Thi kads to the equation

Hene6(6) (1-tay?(A 6)] (41/0)

* C

_____c__
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I

- 8(6)/cos 32)

• It s, kIdd bc b bser-wred that in the above examipes the-e is a pos-f sibility that ("12), (4~-31) and (4-32) wifl.' lead to illeg"Itinate esti-

mates, for :n ee) we have no assW that 6(2S)<0(6)] 2 ,  d in

(4-25) and (4-32) we canmot be assured that . Furhen re, since

thoese estimates wifl be cazp-ted cn a digital caqiuter, it is wise to

modify the resulting equations, utienever necessair-, to prvent the

occurrer.ce of ill-egal aritrmetical machine operations. For example,

in (4-3!) we can be sure that we take the square root of a non-

negative numrer if we take the absolute magnitude of the quantity

[.1 - 6(26)/J8-(Sf]. While this must be regarded as an artifice, it

will prevent a machine abort and provide an anser, wich can then be

subjected to .crutiny. (Of comse, one could provide for an indica-

tion by the ccaiuter whenever an illegal operation would have re-

sulted if not for the artifice.) It is remarked here that in the

simulations of Examples 1 and 2 such artifices were not required.

4.5 9he Bias of the Iterative Estimate of a

Once the parameters of the normalized covariance function are

estimated (by any method) we generate the desired weight matrix,
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= and he- first ±teratn- of the procedure provides us with

MIFrli%- (4-33)

Notice that the mean of is

Sa + ([TiG]IGe4-34)

We sh1a n imu iestigate the bias vector,

b = [GTG] - TT e (-35)

Consider any t.i ran matrices, A and B, such that A exists. We

cap express the matrix [A + B]- 1 as a power series
-A BI-b = A 1 [_ -BI + (BA-) (B ) 3 +... (-36)

where I denotes the nxn i dentity mtrix. (Equation (4-36) is easily

rfied by separately pre- and post-iultiplying both sides by [A+B].)

Nan rewrite (4-35) in the form

b=[(G) + T G T( ) G T e (4-37)

where ? is any NMN matrix for which [GTG] -I exists. If we associate

[GTZG] with A in (4-35) and [G T - C)G] with B, then

+ "[G(n - I)G][GTCG]-I

Ti...1e _ (4-38)

J14
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-4 Nm suppose thapt lfor elbir Pair (j,v) whdere lqua N, .4v 1'

iii
= (A-39)

,*Ar i -2.IIti-ewc1, a.e are, any xe al nmbers~ and f

JS ~ al nrae ( bt ay randn variable) which is a cauion

factor of all the -erents, of -n This mans that ever eleunent of -r1

mrmlizd -to 1k, bhes an . e~pahsion- into a weighted si mof products in.-

vodking an even -.rir'r of factors of zero-i~er- Gaussian rab-dcm v,.ar-
iables., For Instanice, consider Ekanple 2.. Yran Equation (3-5) it-

f ha that wpen as -holds,,i~stifes(~?)

1b.sigiicance of the propertyi ~3)t htwe thls

Gaussian rabdouL variables,. Renpce when, (4-~39)- holds, b 03 ad the

first lterated iestimate 'is -pnb ed for' ea; it is easy to, see tUhat

when -(A"39) holds, ea~ch successive iteration will also yield an un-

When (4-39) does- rnot h.old it is difficult to establish the bias

of the iterative estimte for (x. 11cw-ever, (4-39)- merely cmrises a
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stufflcient aaendition for unibip-edness. It is therefore possible that

even 111 (4-3.9) is not satisfied the Iterative estimate for a will be

p la-ed., Also, the bias may be smal, even if it is not exactly zero.,;

in&pl 2, for :Lnstance, Equation (4-39) is not satisf ied wI.en we

is treated as an ,xlmowm. parameter. Nonetheles6s, as ,will be seen fr"om 1 {

the simulation -results, the bias of the iterative estimate for -a is I

insignifiant.

4.6 simulation Results

We will now, move to a discussion of-thee results of -simulating i i

Exaples 1 and 2 an employing the iterative est:Wate, of a. We have

already described the estimat-kon procedure, ;and we have given the

explicit form of the covariance parameter estimates for -each example,

The simulation naturally involves -a Mmte.-Carto approximation of":

the desired ensemble expectations-. A teplmique stgpsted by Levin [43]

was used to simulate tbee desired noise randanprocess. The actual

computer program are presented in Appendix II.iI

It was decided that sice the mean and variance of the LS esti-

-----

mator could be calculated analytical-ly, a comparison of the analytical-

ly obtained results with the simulation results for these quantities,

would serve as an indication of the reliability of the simulation.

The simulations were carried out using a sampled data approach !

with ten time samples uniformly spaced on an interval of unit length. ,

---
* -



Eqaim(2-10) was =sed to ca' V1 tste a 1  i e f the M-

estir t oi- a, -m-0 Zquai (2-2)wsue to ralcal1ete tie

of tLle KAF- ThPese msuanties m-- denoted by1 andV Xz-s~ac- I
tiv~y IiWe den,-te tbe e-lo -Amitcz cr' the- Al .mhz-- cf

aL by ML ard that. for the =emq va-. oc t iterative es".-t~

of axby f! T,.: -a1 apro!ztc c t:-- e -n szrmiaed

error off& aLS u the trc a 0lis byte I-Ej S wAde

L,!*.-e correspadUrg quantlt' flmr the e- raLAve estm-te a is

denote-d by I-3, As a meesstre of- the ero-no of t2-a iterative
- k

k ? -.-M -
"

accurate- we shoulJd have 0',± I for aiz -. in c~rw sitifon my

two iterations were xzde. The value of-i given for trhese

simulations. Mhe calIcuaino P2 h-as =dze before trt. atinmt. L

values of Vm anid DZI to four digits. This accomnts for the

apparent discrepancy in the data.

Mie Paramter-s in Exantde 1 were chosen as folows:

Casel1. a, 0 2.0; P =.01;k =100

Case 2. a =2.0 ~ =.01;k=l1

Case 3. a =2.0; 6, .10;k 1

Case 4. a: 2.0; =.01; =0

See Equation (2-37) for the definition of k as used here.
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4

The results of 000 .cn -Carlo _ims (requiring just over Itw cmnutes

of MI 360 rxrnilrzg "te for each case above) are presented in Table I.

ie- si u a-icn for Exale 2 is s ighit]y more ccmplicated because

tFI~he mt-r-- invse of 0 does not have the simple structure it had in

EPa pe 1. A cai uter pxrran for matrix inversion was used to

calculate - ,and two iterations were performed to estirate a. The

caiputer -tzning time was limited to ten minutes for each of the two

cases tried, and the zrxinmi nzrer of VMonte-Carlo trials which could

be cbtained wi thin this time eriod was used. As in Exarple 1 the

sirmiation emloyed ten time samnles uniflormly spaced on an interval

of unit length. In case 1 only the center-frequency was regarded as

L the I .m n covariance parameter, and Equation (4-27) was used to esti-

[1 imate it. in case 2, both the banddth and center-frequency were

estimated using Equations (4P-31) and (14-32). In both simulations we

ued a0 = 2.0, 0 =.01, and fC =  ,/2 was set at 1.5 hz cor-

responding to k = 1 in (2-51). The results of the simulation are

displayed in Table II.
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4.7 Discussion of Simulation Results

With the data convenently stmarized In Tables I and II we c

make several observatins. First we-will discuss the data in Table I

pertaining to the autoregressive example.

Notice that in all but Case 4 there is a dramatic difference

between the variance of the LS estimate and the MVUE; even though

these simulations are for the sampled data case. This indicates that

the conditions for potential dramatic improvement over the IS estimate

given in Equation (2-37), which were derived on the basis of a con-

tinuous-time approach, also serve as a guide to such behavior for the

sampled data case. In fact, Case 4 does not satisfy the conditions

in (2-37), and indeed, does not offer an example of a case where

dramatic improvement over the LS estimate is possible.

As mentioned earlier a ccparison between MS and ao, and between

VLS and MISES serves as an indication of the accuracy of the simula-

tion. With this in mind, there is little doubt that the iterative

estimator for a significantly improves the LS estimate, in problems

Undoubtedly the extent to which this hclds depends upon how "dense"
the sampling is. For the cases studied herein the sampling rate was
sufficiently high that all of the samples fell within the correlation
time of the noise process (the value of T required for

( ,) = e
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characterized by Exanple 1, whenever dramatic improvement is possbile.

Even in Case 4, where dramatic improvement is not possible, a can-

parison of MSE and MSE indicates that the iterative estimator is.LS IT 2

no worse than the LS estimator.

j Also, the degrle of improvement is such that the variance of the

iterative estimate of a is often within a few percent of the variance

of the MVUE of a after only two iterations. In Cases 1 and 2 this

represents a reduction in the variance of the IS estimate of two

orders of magnitude. In Case 3 one order of magnitude reduction in

variance is obtained; and this is all that could possibly be obtained

in view of the ratio VMI/ VLS.

Coupling the above results with the fact demonstrated earlier

that when the inverse-covariance function estimator is used for p the

iterative estimator of a is unbiased, we conclude that the boot-

strapping technique for estimating a, using the inverse-covariance

fuiiction estimator, is an effective tool for estimating the regression

parameter in problems similar to Example 1.

An inspection of Table II, which pertains to the simulation of

Example 2, reveals the same outstanding performance., Note that even

when the covariance function has two parameters to be estimated, the

iterative estimate of a achieves two orders of magnitude reduction in

f 4"
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the mean squared estimation error; and again after only two itera-

tions. it should also be observed that the mean value of the iterative

estimate of a is approximately equal to a . Hence, even though the

condition in (4-39) is not satisfied for Exam:ple 2, the iterative 4
estimator for d has negligible bias.

It is interesting to observe that in both of the exaples s.im-

ulated, the bootstrapping estimation procedure is capable of reducing

the mean squared er'or of the IS estimator by orders of magnitude

even after only one iteration.

4.8 Conclusions

We have demonstrated that in problems involving the estimation

of linear regression parameters in colored Gaussian noise, the simple

iS estimator can be significantly suboptimal. When the noise

covaiance function can be described as a known function of a finite

number of unknown, nonrandom parameters it is possible to take ad-

vantage of this information to improve upon the iS estimator.

By starting with the iS estimator of the regression parameter and

employing an iterative bootstrapping procedure, we have shown that it

is possible to greatly reduce the mean squared estimation error, even

after only one iteration. Furthermore, even though no MVUE for the

regression parameter exists unless the normalized noise covariance
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function is known precisely, we have seen that the perfonnance of the

iterative regression estimate is very near to the performance of the

MVUJE after only two iterations.

Depending upon the noise covariance, the bootstrapping procedure

may lead to an unbiased estimate of the regression parameter; or to an

estimate which is approximately unbiased. When the noise is a

Gaussian, stationary, first-order autoregressive scheme, the iterative

estimator can be rendered unbiased.

The bootstrapping procedure requires an estimate of the pertinent

covariance parameters. We have suggested several approaches which may

be taken to obtain the desired estimates:

i) maximum likelihood

2) Barankin

3) inverse-covariance function.

Judging from the simulation results, it does not ap)pear that the

success of the bootstrapping procedure requires an unbiased estimate

of the covariance parameters. To this extent any of the above-men-

tioned approaches to covariance parameter estimation are admissible,

and the Barankin approach, which would provide an unbiased estimate

at least for selected points in the covariance parameter space, is

possibly superior. In the examples simulated, the inverse-covariance
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function technique was employed because of its simplicity.

1 4.9 Suggestions for Further Study

A We have exhibited a class of problems in which the IS estimator

of linear regression parameters can be significantly improved upon

using a bootstrapping procedure. This class of problems is charac-

terized by the property that the noise spectrum contains a "spike"

which has a bandwidth which is small ccmpared to the regression

signal's bandwidth, and which is located so that the "mainlobes" of

the signal and noise spectra are separated in the frequency dcmain.

It seems very difficult to state useful necessary and sufficient

conditions for the effectiveness of the bootstrapping procedure (or

any other procedure, for that matter). It would be desirable, however,

to extend the results obtained to other problems where the noise

spectrum contains several spikes, for example.

It would also be interesting to fi-nd other classes of problems

which have the potential of dramatic improvement over the IS esti-

mator, i.e., where the variance of the MVUE is significantly smaller

than that of the ES estimator.

Another topic of interest is related to the complicated problem

of investigating the sensitivity of the GLS estimator to the choice

of the weight matrix [44]. It would be interesting to compare the
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performance of the bootstrapping procedure using different covariance

paramter estimates.

I-

JI
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APPDIX I

In.Section 2.4 we had need for the solution, h(t), of the in-

tegral equation

T

a2Jh(t) exp(-a1t-sI) cos[w (t-s)] dt = !.; ss[0,T] (I-I)
0

Here we .present the details for finding h(t).

According to Zadeh and Raggazzini, [45, 46], by virtue of Equa-

tion (2-62) the solution is of the form:

h(t) =Ke - kt + K + K26(t) + K36(t-T) + K4e-k(T-t) (1-2)

We will find the six constants by direct substitution of (I-2) into

(I-1). To facilitate the algebra we will perform the integration for

each term of h(t) separately.

Hence, integrating with the kernel K e - kt we obtain,

T

I= a2  Ke-kt e-SI cos[w c(t-s) ] dt

s

Of2Ko e- kt e(s - t) cos[w C(s-t)] dt

T

+ a2  e- kt e+(s - t) cos[ne(s-t)] dt
0s

I-T + I1 (1-3)
111+12



85 if

where

K a (k-0) e~k
1 +e - (k-0)s s +SII1 2 2 1 e-cc s-n (I-li)

c

K a (k-s) L - ~
K0(2 (k+0)e-kS _ ) (T-s) r [w(T-s

112 + (k+a) l+e 2 1 CO c

+ kc sin [w (T-s)]]} ('-5)

The integration with K1 as the kernel may be obtained fran the

above by setting k = 0. Therefore;

T

12 = 2f K1 e- SI cos[w(t-s)] dt= 121+I22 (1-6)

where,

a K 1 ( -as
2 1 - [cos (S ) - S (I-?)

121 2 +2 e- s - i c

(1 +~ JI
C

1 1 -+e8(T-s)F
22 2 o (T-s)] + sin (T-s) (1-8)

The integrals resulting from the third and fourth terms in (1-2)

are easily seen to be

2 -as13 =K2 e cosws (1-9)

14 = K3 a2 e - (T-s) cos[Wc(T-s)] (I-10)
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Finally, the result of using K4ek(Tt) as the kernel may be

found from (1-4) and (1-5) upon replacing k by -k and K by Ke-kT

That is,

T
1 = a2 f K4e-k(T-t) e- oIt -sI cos[6me(t-s)] dt = I + I (I-l!)

5 0C51 52

where,

K4
2(k+o)e+kse-kT ( e(k+0)s[c 

's
51 22+eo

kc sin w (1-12)

K4
2(k- B)e+kse - kT/ (Os-k)(i-

152 - 2 + + e- - ) [cos[W (T-S)

52 2 C

- sin[w(T-s) (1-13)

We now solve for the constants by requiring that

1 + 12 + 13 + 14+ 15= 1 (I-14)

The right-hand side of (I-14) has no dependence on s. Hence, the

constants on the left-hand side must be chosen so that the dependence

on s vanishes. For example, it can be verified that the terms in e -+k s

which,.appear on the left-hand side of (I-14) will vanish for arbitrary

K0 and K4 (different from zero) if

k2 =w 2 + (1-15)C
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To solve for K and K4 we equate the coefficients of e sincs

and e -(T-S)sin[wc(T-s)] to zero. This results in the equations

KoekT Kcui K____e-kT

22 2 2 2-2
W + (k-0)2  W2 + w + (k+)

e-kT  Kltwc  K wo

2 wo2 + 2 + w2 +(_

Wc +( c c

This system of equations yields

K0 =K4 (-18)

and

K 0 [ +e+K00 + e12 (I-19)K w + (w82 o + (k+ ) W) +

c C C

But from the constant terms on both sides of (I-14) we have

2 2Wi +8
K C (1-20)

28a2

Inserting this result into (1-19) yields

2 + (k) 2 [2 (k+ ) 21

K2 2 -kT (1-21)
0 12 2 ( [w + (k+ 8 )2 ] + [w + (k- ) l e )

Finally, setting the coefficients of e- cosw s and

Te-O(-S) coswt (T-s) equal to zero provides us with exactly the sameC
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equations for K2 and K3 ; so that

K = K (1-22)

2 23k
and

:K a 2(k-) 2 K a (k+8)e - k T

2 22 2 + Kc' 1 2  = 0 (1-23)
w2 + (k-0) w 2 + (k+8)

Hence,
2(J ( 21  2

k([2+ (k+[) _ [w2 + (k-O)2]e - kT
K 2 -20a2([ 2 + (k+0)2] + [w2 + (k-0)2]e-kT) (-24)

ising (I-15) these results may be expressed in the form of Equations

(2-55) through (2-59).

f

I' ___ ____ _-_- _
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APP DIX II

In Chapter III we made use of Barankin's theory of locally best

unbiased estimation. Here we give details of the development of thi.

subject; following closely the approaches of Barankin [14] and Swerling

[15, 47].

We begin-by defining a measure space (X,.,p) where X is a sanple

space of points, x, ,is a a-field of subsets of X, and - is a countably

additive measure defined on .

Consider the family of probability measures lPpsAl defined on

,? where a is a real scalar parameter belorging to the set A. We shall
L1

assume that the measures Pa are absolutely continuous with respect to

the measure p for every asA. Hence, we may define the family of

probability density functions, = pa;aEA}, on X with respect to the

measure p using the Radon-Nikodym theorem. So, let B be any subset of

X. Then

f dacc f pdlJ BCX and as:A (11-1)

B B

In our application we shall take p to be Lebesgue measure, and

will be the family of Gaussian probability densities defined on the

extended real line. We shall retain the above notation, however, for

the sake of generality.

Our goal is to draw inferences on the unknown nonrandan parameter,
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a, or on 'sae known (real valued) function g of this paramter. That

is, let g be a known real valued hnction defined on A. We seek a

real valued p-masurabld function, T(x), on' X which is. an unbiased

estimate of, g(), and which is best in the mean .square sense at some

prescribed point a, = a . Thus, if', we letl2/denote the class of all

jj-measu'able functions, T(), on X having the unbiasedness property

fTdpa  g(a) Ya -A (i
ax

we seek T e Usuch that
0

ga)2 dP < ~f[T -g(%-)] 
2 dp.a 31're2I (11-3)

x 0 xC
It is convenient to define

(x) = T(x) - g(a) (11-4)

h(a) = g(a) - -g(a) (11-5)0I
We also define the norm on X with respect to ,the nominal measure

Pa for any p-measurable function, * as
0 1rl /2II''I J 2 (x)dpx) (11-6)

Vote that jI II2 is the mean squared error .of the estimate T about U

g(c°)" !

Now for TeI we can rewrite (11-2) as

; 1'



'e, -r IA& 7,,:A-- -A.

an:~~~~ ~ ~ ~ ~ =;np;6 -tma&fr (01

Tht.is d i U an unbiser!dhr eim-Xaltbi~rga) Cnd ii a() s

f~nt~po a, --s re meame M e ratis.th

0 1

f (x)-n(a,x)ciP~ lhct ;YqyA eJ

Let us now~ ccrlsider th measurabl6ae (W. n'tXb n

signed measure -n, 'A,*) such that thie itgasf~icX and

fir(a~x)A(a;Q (x-), exist. Then W~e my integr ate both sides of

(h )w,th resectto X and obtain(1-)

A



v here tbe 1jul'T,=-iqI iP±U -i atpicatio3. of tlhe 3-6ctrz In-

Sis:

~I,,-. last ter boundA off the e 'ecssiC-- Cn theigian4 i de

-(U-11) mxst be taken ovr- a-1 asdslble, mnasues A in order to otainz

III2g H~ever, the inisertion of' arr ad~fs$-ibje I M the t-In

side will 41urnish a lower botnrn for pg4I2, thcu Mf Wo~a-vt~

greatest lower bound.

Thequaitty 1OUIbis referred to as Vie 1B4aankn bma..id,

ais regarded as the true value- of the rparaete-r a, Fknsation (JI1-3-4)

provides us with the greatest lad..r oundo h aineo i -

'biased estimates of g(a).

Ou~r main concern here -is with the prcblem off evalating tNn'e

BarankIn botund. We are also interested in obtainibng an explicit cn-

struction for the estimator which attains this bound (hereafter

referred to as the Barankin estimator).
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Tothis end, for any glivena let 2/20 denote the set of all

f~nci~os, (x) satisfying (A-7) for itich ~ Asi~ta

(ax (ax (x

A2 is nor'ffrty. 'at ?t2 0deno~te the closire of ?1 2 tae

22

exists a Airiticn, 0 (x), (and corre-spcnxding to it, T 0(x)) ehich

mflrizes 00 2' for all Dxnctions in 0 and whbichn is unique with2

probabi-LIt-y cne (% noasure for any ae~A). It is rew-Aied that in

greneral? Tx C-4 -11 derend u~on a0 . Ibi wil be t~h caeuls
2(x

min:Inize-s flflI fox- every a A.

it w-ill be~ assted that T W) is an uniuiased estimate of g(a),

for _1, this werea im-t the case, there would be no unbiased. estimate of

g(cz) T40iich ha--i rinina-m inea squiared error whien a = a 0

Ccnsider nw functiorws f(ca) defie oier- A having the formr

I If~) J(x~dacx(x) Ya-A fTT.12

x

i here H(-.0 is any~ pi-oasurable Iinction such th; 1111112 <. let F

denote the fauiily of% all such fl~rctions. Then, it, is easy to show

that fcr ayfeF and for any conccomitant H, the integral

JT (x)!H(x)dP' (x) yle~ds tesa=e constant. To see this, fox, sari
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t(real) e define the P-measurable function

T (x) = T (x) + S[HI(X) - H2 x)] (I-13)

where H and H2 both satisY (11-12) wrth H d2 < I 1 2 < .
Since H and H satisfy (11-12), T x) is in '. The fact that 11H112

and" "|H202 are bounded emstmes that T*x is in 2 . Consider

D(e) = f[T*(x) - g(a0 )] 2 doa(X) (I1-14)
x0

Calculating _ will reveal that unless

fT(x)[H(x) - H2(x)] dP (x) = 0 M-15)
X 0

we will have 3D() 0 0. This, how;ever, would contradict the
e E

definition of T(x).
0(o)

We may nm defne a Pinctional A 0 on F as follas. For

(a) = fH(x)dP x ; aeA, 1H1 2 <
~X

define

(a)
A [r] = JfH(x)[T (x) - g(a dPC(x) (11-16)

(Jo(

The fact that {To(x)H(x)dPa (x) is a constant ensures that A 0[f]

is uniquely defined for any fsF and for any curcaitant H. Note that

5$

'- ! lI
1[

I

____________________________ -__I
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(ao)  (do)  A(O[
if fI and f 2 are elements of F, A [ffl f 2]-- A [fl] + 2(]O)f.

(a) (a)f
Also for any constant k and for all feF we have A 0 [kf] = kA 0 [f]

Therefore, A is a linear functional defined on F.

IWo observations are now in order. First we notice that for

f(c) = c, where c is any (real) constant, we may use H(x) = c in

(II-12). Hence, for any constant, c

(a 0) [
A [] = 0 (11-17)

Also, setting f(a) = g(c) we may use H(x) = T0 (x) and discover that

A )[g] = j2 2 (1-18)
!A 0

This shows that evaluation of the Barankin bound is equivalent

(ao)
to evaluating A 0[g]. We will now show that it is possible to

(a 0)
evaluate A on a certain set of functions of a to be defined below.

Once this is done, if g(x) can be expressed as a linear coanbination of

the functions for vich A 0  ] can be evaluated, we will be able to

calculate A 0 [g].

Define the function

G(c,&'J ) fIr(a,x)(a',x)dPc (x) (I-19)

X 0 _

i 1E
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and assume that G(a,a'la ) 0is bounded for all asA whenever a' belongs
to sate set AaaA. It is easy to see that G(a,a'la0), considered as

a function of a can be expressed in the form

G(a,a' Ia) = fH(x)dP (x) IIHII<
X

if H(x) is identified as

H(x) = 7r(a',x) (11-20)

and if 11H112 < whenever a'sA
0

(a
Hence, for A operating on G considered as a function of a, we

have

S0 Gaa & ,x) '(x) - g(a 0 d (X)

= g(a') - g(a0) ; a'eA (I-21)
0

Now suppose for the maeent that A is caposed of discrete points

{ i ;i = 0,1,...,n} (n may be infinite). Also suppose that g(a) on A

can be expressed as a linear ccmbination of the functions G(a,a' Ila)

considered as functions of a' for a'lA .That is, suppose there
0

exists same set of real numbers laiI such that for {aiJeA
n

g(a)- g(a)= a G(a%,a% ; aa.} A (11-22)0 J =0 J 0aO

0-
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(9the set lai1 may be found by inverting the (n + 1) x (n +1) matrix

of elements[G(ai,ajjI o) ; ij =0,1,...,n] ). Then

(aO) (a n (ao)
~ol =A [g] A [Eg - g()] =o FaA 0 [G(a,ala °0 J---O J )

n [ [g(cj) - g( ] I
E 0 aga)_ ao(11-23)

Equation (11-23) provides us with an exact expression for the Barankln

bound when the parameter space is canposed of a denrierable set of

points.

We can verify that the estimator

()= a7~j~);ialA(11-24)+(x) :Z ir(a,x) % ° .-

is unbiased for h() when the {adJ satisfy (11-22), since for aiEA
n]

n fp(x;a)P(xa )
C(x)d a W px;ai d

X j=o 0{

n= ajG(t,IL ) = g~a){} ~
E - g(ao) ; {cilA (11-25)

J=o

Alo

.1<

S- -- -.-- -- -- --- -- _

---
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n Cx.)l2 -- / ' = C -_ja k7(ajxC% pX;od

n n n

=E~ aj~akG(cL.,c4Ja) = a ( aj)

- g(% Holl 2  (11-26)

Hence, by the uniqueness property of the Barankin estimator

n

T(W = 4 (x) + g(a) = aj 1(,x) + g(a) (11-27)0 0 j=o 0

So far we have shcimm how to calculate the Barankin bound and the

flai-ankin estinator,uihen A is ccaposed of a countable set of points.

We now want tq -generalite these results to the case when A is an in-

teradl o the rl2 Une. Loosely speaking, what is needed is a

representation -for g(a) on A, sinilar to the expression in (11-22);

s -h'tat the linear functional A 0 operating on g(a) can be expressed

3h ter df A ,operating on G(a,c'aIa) considered as a function of

a- v+t w-- resent sam preliminaries.

SSuppqse that f.(a) is any function defined on A which belongs to

F S uPose that ,for every i there is sane Hi(x) with Hi  < such

fn kxP-x) aeA Cx) _jj =.A (11-28)

X

I
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the quantities

f(ca) = Lin fl(i) (11-29)

H(x) lim H(x) (11-30)

exist and lin =O 0 (That is, Hi converges in mean to H).

Then,

LoowY 1 I! ''
4 A= - AoX)-g( X

- 0 -3)

12 H 2  0 (,I_31
H,,(x dP WJim jIH1

i - i -X ,Hixx)-dP xx jIIo1I •jmH -o(-

Hence, under the conditions stated above

(ar 1()
A lir =Jim A o[f j (11-32)
Consider now any function or generalized funtionI, d, on A a

such that both integrals frax f raXd~a~P Wf f a
X A 0

a

fG(L,aila )dxt) exist and are equal for all aBA. Suppose, cor-
A

a 0

responding to MI-22), we can find such a dX, 0a X o hc

(a ) go%) fGca,a, l%)dX(a') ;YaeA -I-33'
0 A 

7

0X
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That is, g(a) - g(a) has the representation

g~)-gaO fIf 7r~a.x)d()tdP aCx) (11-341)

0

Identifying fw(atx)d(ctt) with H(x) in (11-12), we see that if

A a
0a (

7( C,x)da(at) < co, then [g(a) - g(a)] F, and A [g] is
A

uniquely defined. Therefore,

(a) (a)
Im 2 gmA 0 [g] A 0 [g - g()]

fj (a,x)dX(a)[ [T (x) -(a ojdp (X)
a0

= (x) - g(a oda,(x)d (a)

A X0

= [g'at) - 0)d-(at) (11-35)A 
:

a0

The Barankin estimator in this case beccmes

ToX) = (a,x)d() + g( )  (11-36)
A a

0
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Forthernore, in view of (11-32), if we have an infinite sequence

4 gi(a)I converging to g(a) YasA and a concomitant sequence {d i

satisfying (II-33) and such that for scue do,lim I fir(ax)d~1 (a)
A- aI 0

- fn(ax)d(Ca) 2 0, then (I1-35) and (11-36) zecin valid.

A
0

While it is admitted that in many cases we cannot hope to find a
0

closed form solution for dA satisfying (11-33), two facts are of

interest.

First, as has been mentioned, the use of any_ admissible A wil].

furnish a lower bound for IIvI2 va (I-11) writhout the lub operation.

In fact, to this end we need not restrict A to be a signed measure.

That is, if dJA is any function or generalized function for which
ffu(a,x)dX(a) (x)dP, (x)a ff (x) (,x)dP (x)dX(a)- fh(a)dX(a),

XA 0 AX 0 A

then (II-10) still holds. In particular, if h(a) and Tr(c,x) are such

that dA(a) = 61'(a - a )dctt is admissible, then with a taken as the
00

true value of a we obtain the C-R bound for unbiased estirmates of g(a).

tThe notation 6'(.) denotes the derivative of the Dirac distribution.

See Reference [37].

I
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Secondly, if the parameter space is not composed of a countable

set of points one could perform a dissection of the parameter space

into say, n points and cast the problem into the discrete form. Then

one may solve for the suitable constants $aj in (11-22). By taking

n, aie enough it may be possible to obtain a good approximation to

the results for the continuous parameter problem. The Barankin esti-

mator which results from this procedure will be urbiased for every

-pint in the dissection if a solution to (11-22) exists.

In arriAng at the Barankin estimator for g(a) it has been noted

that in general.To(x) will depend explicitly on ao . Such an estimator

is, termed "locally best" at 6 = a . If only a locally best unbiased

estima tor ,for g(a) exists, it is not legitimate to choose a to cor-

respond to the true value of a for the purpose of constructing the

Barahkin estimator, because then the Barankin estimator will explicitly

depend on the parameter to be estimated. In this case, one must accept

-scuiething less than an estimate which is best in the mean square sense

about the true parameter value. In lieu of choosing a different

approach entirely, it might be satisfactory to use the Barankin theory

to construct an estimate which is best in the mean square sense about

some arbitrarily chosen point ao, which is not necessarily the true

value of a. (Implicitly we are saying that the selection of is made

'.
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fran data which is statistically independent of the data to be used in

constructing the Barankin estimator.) In any case, we will obtain an

unbiased estimate of g(d) in this fasbhion if one exists.

We might then hope that the Bararn estimator, To, which is best

about a. does not differ widely from the estimator, T, which would

have been obtained had a been chosen as the true value of a. As a

measure of the sensitivity of To to the choice of a we could.use

S 0

2 (11-37Y

where the expectation is taken over the distribution corresponding to

a,, the true value of a.

p Then,

E1~O - 2 [cca) - g (a922 €_+ (1I-38)
IC Z (i2 (o- l

(a-a) a) 2
0 0

In principle, once dA° and di, (or their counterparts for the discrete

parameter space) are found satisfying

00

fG(a',al'ladXl(a') g(a) - g(ad) ; YdA (IT-I 0)

A Wg(H
f 1
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//PAMd44 EXE F(!RTKIWf
C, SII1.UA1IL0i USING LEAST-SXLAES ESTIPzlUE

c. kl=*J. Or- PKIWE-ECLLN 7RiZLS
L h2=kg. M~ TI'PE SLPtPLtS
C, TzkdSEk"1A1I0r4 LEkTi
c. AS~zkA~hOwm REGRESS17* PliftawcTER

r- GIVE-CTU. OF K~m' REGWSSI~wi iIr..Thpui VfLLvW5
c. 1RzLUl VIICTiM

c. U=VKCTaW flF I'EP. GIUSS. R.VNS
c. ECT~k OF CORqELA1EO GAUSS. R.V.I S

la Ft"MMIyo1 SIMSLLTIOU' FUR~ L.S. ESTIKA-TLR twF ALPH'-' Il

C Tift PROGU.K WILL LxEr LIM~ITED TO A PUX IXF TENv TIVV SALKPt.ES

03NEIRS!U1 Rw uTa1Iw xATII1I. -UMT21I
ElUbLIE PKECISIOU T~d,~JRIt0.

C. lfPUT I5rrE!zjujilp

P-i=10c

T-1.0
eo3=.G1
Ao=2.0

C SOME: MJXILL NARY CEMST*DgIS
PI13.14159Z6

BELTA=TI £IQ-1

is Ao=lq14.2, Fo',gFB.5,0 CPSlII3
C
C Ft~thlhG bW VECTUR 61

DO 40 K1,ft12
L=K-1

40 G1(I=CUSlVOSDELTAwL)
C
C PRE-COMfPUTATIOMUS FUR L.S. ESTIMATE OF AD

Y1=0.0
Do 55 1=1,1#2

TI=Yl
C
C THE VARIANCE OF AHATI KAY 8E CALCULATED ANIALYTICALLY A'ID
C WILL BE COhPARED WITH THE SIftULATIUli RESULTS
C
L FIRST WE CALCULATE THE MIIMUM* VARIAnCE FUR
s.. ESTIDMATIUM OF AO--VAKI14
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VU 691 I122
60Zi(11-zOli11R.

VA&%Ift I I.-PMrs21/Z

C SETTING UP TbiE TRUE CliV. rfTJRIXVPHI10
Uo4~ 1SO I=1,fts
U0 100 J=Iv'2

100 CUPITIW&E

U=0.0
ErU 90 I=1.9kZ

Ea 90 lwt

VLS=WI(i1*w2)

X2=0.0
X3=0.0

11=0.0

DU 500 G5~=,I II

c. GE94tP.A1IDG 1hOEP. GAUSS. R.V.NSS

U(L)=RAtJG( JP.AIIJ
20 CWTJI5JE

c. GENiERATIftG ThE DESIRED SAMPLED RAFI)OM PROCESS

ou 30 K=Z.10

30 CUNdI1dik

c GENLKATI1IG THE DATA VECTOR
DUi 50 1=1,fI2

50 COlT INUE

c THE L.S. ESTIMATE --- AHATI
Y2=0.0
00) 65 11l,u2
Y2=Gl 1 )sf(I1+YZ

65 CON4TINUJE

AHATI (N)=Y2I1 1



75 1=1.1
7t Wi S12CUE-~1L~w

c ; RISE SIAToN1

Z Y4=tIK I -Al42T at MR**6( 1-1, *G ( I.*ZYy

C

20Y&=[Gl 1(J-WwwaiT le)h3I 1-131*02.OY6
ARZT2 00* =y51y6

X4I=0.0
W0 230 1=2910
X4=lR(W -AF!P3'G ( 1Zx

230 CCnsTIM~E

C Iff ITEXA1TJD EST1"ARU IF ALPHA-AtWATII

W0 240 I-2.Rk
240

W-j ZA-0 :=2,-TZ[ ~ ~~~~~~260 ~~G iIs'~*tt~1I-l12X

c

Y7=3fsTJH fil~sS2

Yl'!B= AfA 11911wa!iI

8;A1STevUI1 J-2X

tR-SA~y911?4

fikZ=2h



3c

PEKF=vAIIIftSEA II

C

7 FtruflA(lmo,l AO M-1 IAZ VLS MStAl ,SEAZI
V1' VAMINu ,KUj MSERtW ftAIT IISfAIT PERFgvl/)

WRI TE(6, IZIAO*PA*1 ,?A2vVLSvSt2A1HSA2VAKI Its P01UftSEK40,

12 I-IjfkMAT(II ,F4.1,2X,21F6..4,2X),F6.3,2X,2(F7.4,2X),F7.4,3X,
IF6.2X,18.4,4XF6.4,ZX,F6.4,'XF5.61
W4RITEI6, 14) 1RAPE

14 Ft.JLtaT(1atO,' IRARDI= 0,110)

C SUbHRWT11a- FIR GEnL-RaTIi GDAUSSIAft RAIIh~ VIJXIAtLES
I-t~Ilk' 1U5ROUGIMIAkiJI
(AO TIJ 11t2l. KRAIIDG

Xw1AG=S(~R1 (-2. ALU' (U13IR
Xl=XHA"LGSI 6.283 184vUJ2)

RKKA1;G=xl

2 2tA) v lift0 6.283134OU2)

20kEAURIJIk

EAD EN- JU
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V#4X44 EXEC FDRURtS!C)

1I1PLICIT REAL*4 I'M
CALL. CLOCKIKKC;

1'C, :d#1AAM1'G 7HE CEASI VUR. Wc'.;UVYt D ?4OISL

C E1?O..- RT LJTsliaL-S
c m2=fitl. OF TIME S'.XPLES
L TeSEiA!M LlEftG'1tt
Ic A5UKuitt WESIE31 Vi' AHVER

NE'rPUISE C NTZR~ FREENT PARAMETER

G gl;zl)IT WCTUX
Cr cveVTJ% !* itU)~?. GAUSS,
C V=AtXlLIA9*-. VECUTQ UF 1iUEP. cAl'S5 R.Y.Is

E-VECTEM OF- CORRELAT-9 G3"'ss. R.V.IS

c

DO~iLE PIRE4S1OIM 1.~1~.0fAt0C,~,IC,

ULnkE P.'Ec1Sim~ RK;

bo=.01 
-

P1=3.1 41!,926
WC3P!
FC=WCl (2vP1

C ELIAT/I h2-1 3

C 1RlTEf6vlS)I,N2,riBevAosFOFC
15 FORKiAT(1,r3,' NI=4116, 1=13,' T~,F5.191' BOx,F4.2,

C
C FORKING THE VECTOR G1

DO 5,0 Kc1.fl'
L=K-1

40 GI(K)=CIJ!,IWOUELTA*LI

C PRE~-COMPUTATIONS FOR L.S. ESTiHATk

DO 55 11l,N2
55, Ylu.(l)#*2+Yl

C
C SETTING liP THE TA;WE COVARIANCE MATRIX

Oil 100 Jz1,M2

DO 100 J~IN2



PH11011 JI=VEXPI-!s0=UEL1AO(J- Ii))UCUSII4COL~LTA'(J-I))
PHIolJIl=P81I ,IJJ

1001 CUNT IND[:

c. CAILCULATING THE VARIANCE 'F ]HE L.S. ESTIMATE

C. W=0.0

LU 90 11I,NZ
Vii 90 J=10N
14=14IsPHIO(I JJ'G1IJ)*W

go CPI dIMJE
VLS=W/(T1*C2)

c. CALC.ULATING REOUIKEU) CONSTANTS TV GENERATE THE UESIREJ
L. TIKE SERIES

AAU=PHl0(l,2)*(1.-VEXP(2t0OLLiAJ1
bdU=1.-Ut:XP(-4*h0*VhLTA)
CC=(1BBOiiSURl 3B9=-4AA 3())2.
CO=VSORT(II-CC*02)
s!l0=LSURT (CC)
C3=h0'AAIJ/CC
C4=VEXP( -2*h0clEL TA)

C5=20PHI0( 1.21
H11H0vC5-C3

C
C FOR THE KEST (IF THE PROJGHAh WE NEEDL THE MIATRIX INVERSE
c O.SF PH10--NUT PH10.

c THE FOLLOWING MATRIX INVERSION REPLACES PH10 WITH ITS INVERSE.
C

C.ALL DPINV(PHION2,TEST,DEIER,114.2fl21

C WE NOW CALCULATE ]HE MINImUM POSSIBLE VARIANCE
C FUR ESTIMATING AQ ---- VAtMiN

'I C

141=0.0
DJO 95 1=1 1 NZ
DV 95 J=10N2
Wl=GhII)vPHI0( I!Jl*G1IJ)+W1

95 CONTINUE
VAMINI=./Wl

C

C MONTE CARLO SIMULATION
C

X2=0.0 3

X3=0.*0
Y7=0.0
Y8=0.0
Y9=0.0

C
DO 500 N5=1,Nl

C GENERATING IHE SETS UF INDEP. GAUSS. R.V.IS
ti0 20 L=1,10
O(L=RANUG(IRAND)



20 CUNT INLJI11
DOil L1t2
V(LI=RANVGI IRAND)

21 CUNT ItJUE
L
C. GENE:RATING THE DESIRED SAMPLEDL R.P.

E:11)=H0*U( LI4LO*V(13
E(2)=H'1J23+H1*U( I),C1*V(1)4C2*V12)
IJU 30 K=3tN2
E(K1C51:(K-l3.C,*AK-2),HO*U(K-C3*U(K-1)

30 CONTIINUE
CIc GENERATING THE DATA VECTOR

DO) 50 11,jNZ

50 C I fAl(1i JiE I

C T~b L.S. ESTIMATE ---- ANATI

Y2G11 1 )=Rf I)+Y2

65 C (WT I ff:
AHAT1ZYZ/I 1

C E5TIIJA;;IiN (IF THE COVARIANCE MATRIX
C,
C. THIS PROGEAH TREATS BANDWIDTH AS A KNOWN PARAMETER
c 14k sTIATE P810(1,2) AND THEN IHETA=WC*utLTA

AI4AT=AHA? 1
73 Y3=o.03

1;1 70 I=2fk2

10
70 CONTINUE

Y4-=D.*

Da 75 1=11114
Y4=;)(!~~-A1G I~I)~2~I 7!i CtAi!wEi

- HLTA=ARt;S!Sr4Gi IPIA

c SETTING UP THE ESlINATEL) C0flAR!A-CE MATF!X

DO( CUEl00U

300nATiJwu PHtE

C. k R8:~EVISED) ESTIMA E--'--AtsiATZ iR A1HATIT
'ALL. IPINVIPtil~altl 4 T: .TUETf:RLLiN2) -

I! CiiTI UW31.
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AHATwW3/W2
IF(IT-1) 63963,64

63 AHAT2=AHAT
ITZ2
GO TO 73

64 AHATIT-AMAT
ITc1

C PERFORMANCE CALCULATIJONS

C
C SAMPLE MEANS

Y7=Y7+AHAT1
Y8=Y8+AKAT2
Y9=Y9+AHATIT

C
C MEAN-SQUAkED ERROR

Xl=IAHATI-A0)V*2+Xl
X2= (AHATZ-AO) **2+X2
X3=(AHATIT-AO)*02+X3
CALL CLUCK(KIL)

IF(IABS(KKM-KKN3.GE. 25200) GO TO 1500

500 CONTINUE
1500 CONTINUE

MA1=Y7IN5
MA2=YB/N5
M4A I T=Y9/N5
MSEAI=X2/N5
MS-A2=X1/N5
HSEAIT=X3/N5
PERF=VAMIN/MSEAIT
WHITE(6,7)

7 FURRATZIHO,' AO MAI MA2 VLS MStlAL MSEA2'
1' VA14IN HAIT lISEAIT PERF,II)

-- 1 ,C

HRP!Et612IAt0,AlHA2,VLSMSEA1,MSEA2tVAMINMAITMSEAlTi
IPERF

12 FOPJ4A7(lH ,F4.1,2X,2(F6.4,2XhtF6.3t2X,2(F7.4t2XhvF7.4,4X,
1F6.4,2X,F6.4 ,4X,F8.6)

1100 4OKtiATI1IH il ACTUAL NO. OF ITERATIONS= 1,18/J
WR1TE(6tl4) IRAND

14 FUt~,AV1tH~h' IRANO= 1,110)
E N!)

IE END OF JUB

ii4
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C HE:RE B~ANDIDiTH AND C1ENIR-FREQUENCY ARE KELARI)1U AS UNKNOWN

C THITAWCI)LTA AND) IXPI-800DI:LTA)=RHj
AtIAT=AHATI

73 Y3=0.0
Y4%0.0

00O 70 1=29N2

70 COiNTINUE:

DO 71 1=3012
Y4=(R( I)-AHAT*6 Ii) )*(I4( -2)-AIIAI*G1I 1-2) )+Y4

71 C UNT II iI

PHIHATI 1,2)=Y3IY5'

THI:A=ATAN(SNGL(USuiR1(UAliS(I.-PHIHAT(1,3)/PHIHAT(1,2)**2f)))
RHII=PHIHAT(1 ,2)/CIJS(THI:TA)P

L

C S1:1T1N6 UP THE I:STIMATtVt COVARIANL: MATRIXDO 300 1=10N2
DO0 300 J1.,NZ
PHIHATIIJ )= (RHU*O(J-1))I CUS(CTHiI:TA*(IJ-1) I
PHiIHAT(J, I)=PHIHAT I ,J)

300 CONiTINUE:

/2 IEND) OFi JOBI

Note:These statements replace statements 73 through 300 in tile
previous Listing when it is desired to simulate Caoe 2 of

Example 2.
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of the class of GLS estimators. "(U)"

Our interest is in the case when the noise covariance is not completely known,
but may be regarded as a known function of a finite number of unknown, nonrandom
parameters, . "(U)"

It is shown that when 0 contains any covariance parameters other than the noise
variance, there exists no7MVUE for a.. "(U")

However, we shall exhibit a class-of problems for which the MVUE for a has a
variance which is orders of magnitude smaller than that of the LS estimator. In such
a case it is of interest to find an estimator which makes use oi whatever covariance.
information is available in an attempt to approach the performance of the MVUE. "(U)'j
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Item. 13 Abstract (co-a t)

It is shown that we can significantly improve upon the LS estimator by employing
a bootstrapping procedure to estimate a. In some cases the bootstrapped estimate
of e% can be shown to be unbiased. In any case, It is demonstrated via computer

simulation that the bootstrapped estimate of a is capable of reducing the variance
of the LS estimate by orders of magnitude. fn fact, the mean squared estimation
error using the bootstrapped estimator for a may be within a few percent of the
variance of the MVUE, i. e., the variance t]e MVUE would have if 8 were known
a-priori. "(U)"

The bootstrapping procedure consists of using the LS estimate of CL to provide
'an initial estimate of the regression vector from which an initial estimate of the
unkno~vn covariance parameters is constructed. "(U)"

Two procedures are outlined to accomplish the estimation of 8. The first
approach is based upon an application of the theory of locally best unbiased estimation.
The second approach is herein termed the "inverse-covariance-function ' technique.
Because of its simplicity, the latter approach is employed in the simulations. "(U)"

Regardless of the manner in which the covariance parameters are estimated,
.these estimates are used to construct the GLS estimator for d. This is the first
iteration of the bootst-. -.pping procedure. "(U)"

The GLS estimate of M is then used to re-estimate the unknown covariance
parameters, and then to re-estimate the regression parameters. "(U)"

The process uses only the one available record of data, and may be repeated
-d nauseam. HIowever, dramatic results were obtained after only two iterations
3f the bootstrapping procedure. "(U)"
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